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Nested sequences of hippocampal
assemblies during behavior support
subsequent sleep replay
Céline Drieu, Ralitsa Todorova, Michaël Zugaro*

Consolidation of spatial and episodic memories is thought to rely on replay of neuronal
activity sequences during sleep. However, the network dynamics underlying the initial
storage of memories during wakefulness have never been tested. Although slow, behavioral
time scale sequences have been claimed to sustain sequential memory formation, fast
(“theta”) time scale sequences, nested within slow sequences, could be instrumental.
We found that in rats traveling passively on a model train, place cells formed behavioral
time scale sequences but theta sequences were degraded, resulting in impaired
subsequent sleep replay. In contrast, when the rats actively ran on a treadmill while being
transported on the train, place cells generated clear theta sequences and accurate
trajectory replay during sleep. Our results support the view that nested sequences underlie
the initial formation of memory traces subsequently consolidated during sleep.

T
he sequential activation of neuronal ensem-
bles is a ubiquitous brain coding scheme
possibly underlying numerous diverse be-
haviors (1–4). Sequential neuronal activ-
ity occurs at different time scales, ranging

from slow (“behavioral”) time scales, where the
dynamics are constrained by stimulus or motor
time constants, to fast (“endogenous”) time scales
mostly driven by intrinsic network properties. A
prominent example is the hippocampus, where
place cells code for an animal’s location (5). As
the animal explores its environment, different
place cell ensembles become successively active
along the ongoing trajectory, yielding sequences
of neuronal activity at the behavioral time scale.
During subsequent slow-wave sleep (SWS), the
same sequences are endogenously replayed dur-
ing sharp-wave ripple complexes at a highly ac-
celerated (20×) time scale (6), mediating memory
consolidation during sleep (7–10). How is the
sequential organization of place cell assemblies
maintained across these two time scales, ex-
pressed at entirely disjoint moments in time
and during different brain states?
Sequential information could be readily stored

during exploration in the hippocampal network
by the sequential activation of place cells at the
behavioral time scale, via a recently discovered
form of behavioral time scale plasticity (11). An
intriguing alternative is that sequential struc-
ture is stored via the remarkable ability of the
hippocampal network to generate nested se-
quences of cell assemblies, whereby both slow
and fast neural sequences are intermingled in
time. This occurs during spatial navigation: Nest-
ed within behavioral time scale sequences, the
hippocampal network also produces sequences

at the theta time scale [one sequence per theta
cycle of ~150 ms (12–14)], allowing cell assem-
blies to fire within brief delays [~25 ms (15)]
compatible with classical Hebbian plasticity,
such as spike timing–dependent plasticity (16).
Are these nested sequences of hippocampal cell
assemblies required for subsequent sleep replay
(12, 13), or are they merely an epiphenomenon
deriving from preexisting connectivity within
the hippocampal network (17–19)?
Contrasting these predictions requires a pro-

tocol that selectively disrupts fast theta sequen-
ces but preserves slow behavioral sequences of
place cell assemblies. Further crucial constraints
are the ability to trigger or release theta sequence
disruption with temporal precision, as well as the
necessity to target the entire hippocampal forma-
tion, both in terms of extent (to overcome infor-
mation redundancy along the septotemporal
axis of the hippocampus) and in terms of fields
(to overcome compensatory network mechanisms
such as pattern completion in CA3, which could
restore locally induced impairments). During
passive transportation in space, place cells re-
main spatially selective, but their precise timing
relative to theta [“phase precession” (12)] is
altered (20) unless the animals actively run
on an onboard treadmill (21). We thus trans-
ported rats on a model train (fig. S1A) and turned
the onboard treadmill off (Passive) or on (Active)
to respectively perturb nested sequences or leave
them intact. The goal was to determine whether
intact nested sequences were required for subse-
quent replay during SWS. The rats were tested in
an entirely novel environment, different from the
training room. Hence, hippocampal activity was
monitored as the animals learned a novel spatial
context, which is known to induce the formation
of a novel hippocampal map, increase network
coordination, boost replay, and enhance plastic-
ity (22–25). Further, because the rats were tested
on a single day, this avoided any confounding

network changes that could have resulted from
previous experience.
We recorded CA1 pyramidal units and local

field potentials (LFPs) in five rats. After a base-
line sleep session, the rats underwent three travel
sessions (Passive 1, Active, Passive 2) interspersed
with sleep sessions (Fig. 1A). The train velocity,
number of laps, and travel duration were similar
in all conditions for all rats (fig. S1, B to D). We
first verified the presence of place cell sequences
at the behavioral time scale in all three condi-
tions. Pyramidal cells always coded for the loca-
tion of the animal in space (Fig. 1B and fig. S2).
Their fields remained similar in terms of size (Fig.
1C and fig. S3) and together covered the entire
train track (fig. S2C). However, peak firing rates
and place cell count were somewhat reduced
during passive travels [Fig. 1C and fig. S2B (20)];
specific controls for these factors are provided
in ensuing analyses (see below). Incidentally, we
also confirmed that place fields did not under-
go random remapping (Fig. 1, D and E, and fig.
S2D). This finding provided further verification
that hippocampal dynamics were virtually iden-
tical at the slow time scale in all travel sessions.
Clear theta oscillations with similar frequen-

cies were observed in all conditions (Fig. 2A).
However, during passive travel, power was slight-
ly reduced at both the fundamental frequency
and the first harmonic, the latter resulting in
decreased cycle asymmetry, indicative of a change
in the internal structure of theta cycles (Fig. 2, A
and B). This was expected to alter the precise
spike timing of active cell assemblies. Consist-
ently, place cells continued to oscillate slightly
faster than theta (i.e., phase precession) during
active travel, whereas this was reduced in pas-
sive travel (Fig. 2, C and D, and fig. S4, A and
B), indicating an overall degradation of phase
precession [Fig. 2, E and F; in phase-precessing
neurons, phase range was similar in all condi-
tions (26) (fig. S4, C to E)]. This degradation
was noteworthy, because phase precession is
thought to be instrumental for the formation
of nested sequences: Place cells normally oscil-
late slightly faster than theta, so they emit spike
bursts earlier and earlier in successive theta
cycles; this [possibly combined with additional
coordinating mechanisms (27, 28)] results in newly
activated cells firing after those that have started
firing in earlier cycles, effectively resulting in
temporal sequences of activity.
To directly assess how perturbation of phase

precession affected theta sequences, we used a
Bayesian reconstruction approach (21, 29, 30).
Briefly, theta cycles were subdivided into six
phase bins, and the sequential structure of re-
constructed positions in these bins (“candidate
events”) was evaluated using two previously de-
scribed complementary measures (30): (i) trajectory
scores [normalized to compare across animals
and conditions (31)], which assess the quality
(linearity) of the reconstructed events (i.e., wheth-
er the events represent spatially aligned positions
versus mere series of random locations); and
(ii) slopes, which estimate the speed at which
reconstructed events are played and indicate
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whether the events move through space or re-
main merely stationary (absence of actual tra-
jectories). Thus, clear theta sequences would
be characterized by both high scores and slopes,
whereas static representations of current posi-
tion would result in high scores but low or zero
slopes, and random activity would be associated
with low scores (but possibly spuriously high
slopes). Clear sequential structure was readily
visible in individual theta cycles during active,
but not passive, travel (Fig. 3A). This was con-
firmed over all theta cycles for all rats (Fig. 3B
and fig. S5). Whereas normalized trajectory scores
were significantly better than chance in all con-
ditions (Fig. 3C), slopes were significantly steeper
during active travel (Fig. 3D and fig. S5, C and
D). Joint analysis of trajectory scores and slopes
revealed a much greater proportion of high-value
pairs during active travel (Fig. 3E). To confirm
and extend these results using an independent
measure, we computed the quadrant score (27)
of each candidate event, which assessed the
overall direction of reconstructed trajectories
without assuming constant velocity. Quadrant
scores were significantly greater for active travel

(clear trajectories) and remained very low for
passive travel (degraded trajectories) (Fig. 3F
and fig. S5B).
Hence, theta sequences were degraded during

passive travel. Note that reconstruction qual-
ity and quadrant scores were higher in Passive 2
than in Passive 1 (Fig. 3, E and F), implying that
sequential structure was slightly less degraded
in the second passive travel session (Fig. 3B). This
was further supported by higher self-consistency
of theta sequences (31) in Passive 2 than in
Passive 1, whereas Active sequences were the
most self-consistent (Fig. 3G and fig. S6A).
We ensured that our results could not be ac-

counted for by differences in the number of sim-
ultaneously recorded place cells (fig. S7) and
their firing rates (fig. S8). We also controlled
for decoding quality (31) (fig. S9), ruling out a
potential bias due to differences in spatial coding,
at both the single-cell and population levels.
Finally, because small variations in field locations
between individual laps could have altered se-
quence detection, we also ruled out differences
in firing variability between travel conditions
(31) (fig. S10).

Taken together, the above results show that
place cell sequences at the behavioral time scale
were present in all three conditions, but theta
sequences were disrupted during passive travel,
when stationary network activity continued to
reflect the ongoing position at the endogenous
time scale. How did this affect subsequent ac-
tivity during SWS? Candidate replay events were
defined as transient surges in aggregate firing
rate (30) during SWS epochs (fig. S11, A and C),
which coincided with ripple events [fig. S11G;
results remained unchanged when candidate
events were restricted to ripples (fig. S12)]. The
average SWS duration, number and rate of can-
didate events, and ripple occurrence rate were not
significantly different across animals (fig. S11, B
and D to F). To reconstruct replayed trajectories,
we first trained the Bayesian decoder using place
cell activity recorded during the preceding travel
session, then tested it during SWS on candidate
events subdivided into 20-ms nonoverlapping
time windows (31).
Candidate replay events were evaluated using

the same method as theta sequences, whereby
genuine sequences are characterized by both
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Fig. 1. Maintenance of behavioral time scale properties. (A) Behavioral
protocol. In a novel environment, rats underwent three successive travel
sessions (Passive 1–Active–Passive 2) interspersed with sleep recordings
(see also fig. S1). Passive travel was intended to selectively perturb spike
timing at the theta time scale but not at the behavioral time scale.
(B) Linearized normalized firing curves of place cells recorded from one
example rat across travel sessions, showing complete track coverage in all
conditions. (C) Place field size was maintained across travel conditions
[Kruskal-Wallis (KW) test, P > 0.05]. Peak firing rates were somewhat lower
in Passive 1 than in Active (KW test, ***P < 10–3). (D) Firing fields did

not remap between Passive 1 and Active. Left: Mean unsigned proportional
shift s (vertical gray line; **P < 0.01) and s distribution for n =
2000 bootstrapped remapping data sets (black histograms). Inset: Circular
distributions of angular differences (in degrees) between place field peak
locations on the maze (Rayleigh test, P < 0.001; V-test against 0, P < 10–4).
Right: Spatial cross-correlograms of firing fields across successive travel
sessions (x axis normalized to field size; black dots represent correlogram
modes; black histograms at top, mode distributions). (E) Firing fields also
did not remap between Active and Passive 2. Data are displayed as in (D).
Left: ***P ~ 0. Inset: Rayleigh test, P < 10–9; V-test against 0, P < 10–10.
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high trajectory scores and slopes. Although can-
didate events with significant trajectory scores
were present in all three sleep sessions, overall
the reconstructed trajectories were notably sharp-
er after active travel (Fig. 4A and fig. S13A),
and scores were significantly improved relative
to baseline (31) only in sleep sessions following
Active and Passive 2 (Fig. 4B). In addition, slopes
were significantly steeper following Active (Fig.
4C and fig. S13B). Joint analysis of trajectory
scores and slopes confirmed a much greater pro-
portion of high-value pairs after active travel
(Fig. 4D and fig. S13, C and D).

We next addressed the critical question of
whether these trajectories did constitute genuine
replay of awake behavior, or merely reflected
preexisting connectivity patterns independent
of experience. We compared the proportion
of significant trajectories in each sleep session
relative to baseline sleep—that is, relative to
the sleep session preceding any exploration of
the environment (as noted above, recordings
took place in an entirely novel environment).
We did not observe replay during sleep following
Passive 1 (Fig. 4E), when theta sequences had
been selectively disrupted (Fig. 3). Trajectory

replay was then boosted in sleep following Active
(Fig. 4E), when nested sequences had remained
intact (Fig. 3). Finally, an intermediate but sig-
nificant level of reactivation was observed fol-
lowing Passive 2 (Fig. 4E), when theta sequences
had been perturbed to a lesser degree than during
Passive 1 (Fig. 3). Although forward and back-
ward trajectories were found in equal propor-
tions during sleep after passive travel, only active
travel resulted in a greater proportion of forward
replay actually reflecting awake experience (Fig.
4F). Finally, a direct comparison of theta and
replay sequences (31) highlighted a selective
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Fig. 2. Perturbation of single-cell theta time scale properties.
(A) Theta maintenance across travel sessions. Top row: Example raw
LFPs (duration, 1 s). Middle row: Power spectrograms (black dashed line,
time of LFP traces shown above; black calibration bar, 15 s). Bottom row:
Normalized power spectra (mean ± SEM). (B) Theta frequency was
unchanged across conditions [top; repeated-measures analysis of variance
(ANOVA), P > 0.90], whereas theta power (middle; repeated-measures
ANOVA, P < 10–6) and shape (bottom, theta asymmetry; KW test, P < 10–84)
were altered during passive travel (frequency and power, mean ± SEM).
**P < 0.0033, ***P < 0.00033 for post hoc comparisons; **P < 0.01,

***P < 0.001 otherwise. (C and D) During passive travel, spike bursts
recurred at lower rates, closer to baseline theta frequency. (C) Distributions
of spectral modes of spike trains (measured relative to theta frequency,
x axis trimmed at ±25% around theta frequency). (D) Spectral modes
(***P < 10–6, *P < 0.02). (E and F) Theta-phase precession was perturbed
during passive travel. (E) Average normalized phase precession density
plots for significantly phase-precessing cells (blue and red indicate
minimum and maximum spike density, respectively). (F) Distribution of
phase precession slopes for all place cells (Kolmogorov-Smirnov test,
**P < 0.008, *P < 0.04; colored dashed vertical lines are medians).
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correlation between theta sequences in Active
and candidate replay events in subsequent sleep
(Fig. 4G and fig. S6, B and C).
Our results thus show that during sleep after

selective disruption of theta sequences (Passive 1),
the proportion of significant trajectories remained
at baseline levels observed prior to experience.
By contrast, intact nested sequences (Active)
resulted in boosted replay during sleep, and tra-
jectories in hippocampal space were preferen-
tially replayed in the same direction as in physical
space. In Passive 2, theta sequences were per-
turbed to a lesser degree than in Passive 1,
yielding intermediate levels of trajectory replay

during subsequent sleep. This result has three
implications. First, repeated experience alone
cannot account for the improved replay follow-
ing Active, because replay was degraded following
Passive 2. Second, the improved theta sequen-
ces during Passive 2 relative to Passive 1 are con-
sistent with the notion that replay following
Active resulted in consolidation (7–10)—possibly
consisting of functional network changes (12, 13)—
that carried over to subsequent sessions. Third,
during Passive 2, scrambled activation of place
cells at the theta time scale appears to have in-
terfered with previously formed and consolidated
memory traces (during Active and subsequent

sleep), resulting in degraded replay during sleep
after Passive 2.
How would nested sequences be altered dur-

ing passive travel? In the absence of active lo-
comotor signals, spike bursts of pyramidal cells
recurred at slightly longer time intervals, con-
sistent with the fact that bursting frequency
increases with running speed (12, 32). As pre-
dicted by theoretical models (13, 14, 33, 34),
this decrease in oscillation frequency resulted
in impaired theta-phase precession and pre-
vented the formation of theta sequences. Theta
sequences have been related to memory perform-
ance (35, 36), although the underlying mechanisms
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Fig. 3. Perturbation of
theta sequences. (A) Top:
Raw LFPs and place cell
spikes in six example theta
cycles (black dashed lines,
theta peaks; place cells are
ordered by their place field
location on the track) in each
travel condition (black
calibration bars, 50 ms).
Bottom: Bayesian
reconstruction of position
encoded in the ongoing
activity of the hippocampal
network (six phase windows
per theta cycle; white vertical
lines, theta peaks; white
dashed lines, actual position of
the animal). (B) Average
Bayesian reconstruction of
position (relative to actual
position of the animal) across
theta subcycles for all rats.
Trajectory score and slope
(in cm cycle−1) are indicated
above each reconstruction.
Two cycles are shown for
clarity. (C) Left: Normalized
score of theta sequences
(KW test, P < 10–23; ***P <
0.00033 for post hoc compar-
isons). Right: Proportion of
significant theta sequences
(Passive 1: 7.95%, Active:
13.61%, Passive 2: 9.05%; all
proportions are significantly
greater than shuffled control
proportions, Monte Carlo test,
P ~ 0; binomial proportion
tests, *P < 0.05, ***P < 0.001).
(D) Distributions of significant
theta sequence slopes (KS
tests; left: Passive 1–Active,
***P < 10–16; right: Active–
Passive 2, ***P < 10–18).
Colored bands indicate
significant differences.
(E) Distribution of theta
sequence quality assessed by joint trajectory score and slope (for all
animals; color code indicates proportion normalized relative to shuffled
control data). (F) Quadrant score computed from individual theta cycles (KW
test, ***P < 10–24; *P < 0.017, ***P < 0.00033 for post hoc comparisons;

**P < 0.01, ***P < 0.001 otherwise). (G) Pairwise bias correlation between
awake theta sequences (ordered according to time of occurrence). Sequences
were stable only during active travel. Note the absence of correlation
during Passive 1 and progressive decay following Active during Passive 2.
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have remained unclear. Our results indicate a
causal link between theta sequences and sleep
replay for memory consolidation, and suggest
that behavioral time scale sequences are in-
sufficient to store sequential information for
reactivation during subsequent sleep. Nested
sequences emerging from independently phase-
precessing place cells (13, 34) enabled hippo-
campal assemblies to fire dozens of milliseconds
apart, which is optimal for classical plasticity
mechanisms (16) and can reinforce synaptic con-
nections (13, 14). This would effectively store
sequential organization as network connectivity
patterns, which can later be replayed during
sleep for long-term consolidation (7–10). Spatio-
temporal spike patterns supporting nested se-
quences have also been reported in the striatum
(37) and medial prefrontal cortex (38). This may
represent a general neural mechanism to en-
code and store initial memory traces, and plan
future actions (35, 39).
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Fig. 4. Replay is degraded
following perturbation of
theta sequences.
(A) Examples of significant
replay events in sleep
sessions (see fig. S16 for
more examples). (B) Scores
of replay events relative to
baseline sleep (KW test,
P < 10–17; *P < 0.017, ***P <
0.00033 for post hoc com-
parisons; ***P < 0.001 oth-
erwise). (C) Absolute slopes
of replay events (KW test,
P < 10–27; ***P < 0.00033
for post hoc comparisons).
(D) Distribution of replay
quality assessed by joint tra-
jectory score and slope
(for all animals; color denotes
proportion normalized rela-
tive to shuffled control data).
(E) Proportion of significant
replay events relative to
baseline sleep (binomial pro-
portion tests, **P < 0.01,
***P < 0.001). Sleep replay
was boosted after active
travel relative to after passive
travel. (F) Proportion of for-
ward (darker colors) versus
reverse (lighter colors) replay
events (binomial proportion
tests, ***P < 0.001). (G) Pairwise bias correlation between awake theta sequences and sleep replay (ordered according to time of occurrence).
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Materials and Methods

Animal training

Five adult male Long-Evans rats (René Janvier, Le Genest Saint Isle, France) weighing 350–400 g

were used in this study. Two days after arrival, they were housed individually and maintained

on a 12-hour light/dark cycle. Rats were kept on a mild water restriction diet (>85% of normal

body weight) throughout the training and experiment phases. Critically, training took place in a

dedicated room, separate from that where experiments were subsequently carried out. Following

one week of daily handling, the rats were first trained to run on a regular treadmill. The speed of

the treadmill and the running duration were increased daily over 3–5 days. In parallel, in order to

familiarize the rats with the model train (LGB, Germany), they were placed in the immobile car

for 10–15 min sessions. Subsequently, the rats learned to run on the miniature treadmill located

inside the (immobile) car, as well as to be passively transported by the train (treadmill off),

before they finally learned to run on the miniature treadmill while being transported by the train

(∼3 weeks; Fig. S1A). The rats were always transported in the forward direction at constant

speed (∼45–50 cm.s−1, Fig. S1B) on the 2.20 m × 1.30 m obround-shaped track. The treadmill

and the train velocity were controlled by the same generator. The rats received sucrose water

rewards (1.25% saccharine), delivered by a solenoid valve in a fountain placed at the front of the

car (Fig. S1A, right) whenever the car arrived at one of two different reward locations on the

track. The entire experimental setup was remotely controlled in order to avoid interference with

experimenters. All procedures were in accordance with national (Comite d’Ethique #2011-0008)

and international (US National Institutes of Health guidelines) standards and legal regulations

(Certificat d’Autorisation d’Exprimenter #A75-1756) regarding the use and care of animals.

Training and experiments took place during the day.

Surgical implantation and electrode adjustment

The rats had free access to water for at least two days before surgery. They were deeply

anesthetized (xylazine, 0.12 ml intramuscular; pentobarbital, 40 mg per kg of body weight,

intraperitoneal; 0.1 ml pentobarbital supplemented every hour). Sixteen independently movable

tetrodes or octrodes (groups of four or eight twisted 13 µm tungsten wires, gold-plated to

∼150 kΩ) were bilaterally implanted above the dorsal hippocampus (3.5 mm or 4 mm AP,

±2.5 mm ML relative to bregma). Two screws attached to the skull above the cerebellum

served as ground and reference, respectively. After a one-week recovery period, the rats were

placed back on the mild water restriction diet and retrained in the dedicated training room.

The electrodes were progressively lowered into the CA1 pyramidal layer, identified based on

both neural firing patterns (e.g. complex spikes) and local field potential (LFP) characteristics

(especially sharp wave-ripple complexes).
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Behavioural task

The experiments took place in a separate, novel room. Following a baseline sleep recording

session, the rats underwent three transportation sessions: passive (treadmill off), then active

(treadmill on), then passive again (Fig. 1A). Each travel condition consisted of 2× ∼15 laps

(Fig. S1C). During the interval period, the rats stayed for less than 2 min in a flower pot while

the experimenter unrolled the recording tethers. Each travel session was followed by a sleep

epoch in the flower pot. Each sleep epoch, including baseline sleep, lasted for ∼90 minutes.

Data acquisition and preprocessing

For the three rats implanted with sixteen tetrodes, brain signals were preamplified using two

32-channel unity-gain preamplifiers (Noted Bt, Pecs, Hungary) and acquired at 32,552.083 Hz

(Digital Lynx, Neuralynx, Bozeman, MO). The head-stages were connected to the recording

setup via two custom-made tethers (New England Wire, Lisbon, NH). For the three rats im-

planted with sixteen octrodes, brain activity was recorded using a 128-channel digital data

acquisition system (KJE-1001, Amplipex, Szeged, Hungary). The signals were digitized using

two 64-channel preamplifiers (Amplipex HS2) and sampled at 20,000 Hz. In both setups, one

LED (red) or two LEDs (red and green) were used to track the head of the animal using an

overhead video camera (sampling rate 30 Hz, resampled at 39.0625 Hz).

Data were pre-processed and visualized using NeuroSuite (http://neurosuite.sourceforge.

net, (40)). Briefly, to extract spiking activity, wide-band signals were high-pass filtered (non-

linear median-based filter) and thresholded using NDManager (L. Hazan and M. Zugaro, http:

//neurosuite.sourceforge.net). Extracted spike waveforms were sorted via a semi-automatic

cluster cutting procedure using KlustaKwik (K.D. Harris, http://klustakwik.sourceforge.

net) and Klusters (L. Hazan, http://neurosuite.sourceforge.net). Neurophysiological and

behavioral data were explored using NeuroScope (L. Hazan, http://neurosuite.sourceforge.

net). Units were classified as putative interneurons or pyramidal cells using k-means clustering

based on waveform width, waveform trough-to-peak duration, and firing rate. Cluster isolation

quality was assessed using the Lratio (41,42). Briefly, the Lratio of cluster C is:

Lratio =
1

ns

∑
i/∈C

{1− CDFχ2
df

(D2
i,C)}

where ns is the total number of spikes recorded on the tetrode throughout the recording epoch,

i /∈ C is the set of spikes that are not members of cluster C, D2
i,C is the Mahalanobis distance of

spike i from cluster C, and CDFχ2
df

is the cumulative distribution function of the χ2 distribution

with df = number of channels of the electrode × number of features. Only well-isolated clusters

with an Lratio <0.05 were included in the analyses. LFPs were derived from wideband signals

by downsampling all channels to 1,250 Hz.
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Recording site verification

Upon completion of the experiments, recording sites were marked with small electrolytic lesions.

Two days later, rats were deeply anesthetized with a lethal dose of pentobarbital, and intracar-

dially perfused with saline (0.9%) followed by paraformaldehyde (10%). The desiccated brains

were post-fixed and conserved in PFA (4%) at 4°C until the histology (50 µm coronal slices,

Cresyl violet staining).

Data analysis and statistics

All analyses were performed in Matlab (MathWorks, Natick, MA), using the Freely Moving Ani-

mal toolbox (FMAToolbox, M. Zugaro, http://fmatoolbox.sourceforge.net) and additional

custom programs.

Descriptive statistics are reported as mean ± standard error of the mean when the underlying

distribution is Gaussian-shaped (Jarque-Bera test) or median ± standard error of the median

otherwise. Unless indicated otherwise, bars represent median ± standard error of the median.

Repeated measures ANOVA was used for multiple comparisons of paired Gaussian distributions,

and differences between groups were assessed using paired Student’s t-test with Bonferroni cor-

rection for post-hoc analysis. For non-Gaussian distributions of independent (non-paired) data,

multiple comparisons were made using Kruskal-Wallis (KW) and differences between groups

were assessed using Wilcoxon rank sum test with Bonferroni-correction for post-hoc analysis.

For paired data following a non-Gaussian distribution, Friedman test was employed, with signed

rank tests with Bonferroni-correction for post-hoc analyses for assessing differences between

groups.

Proportions were compared using the binomial proportion test. Medians (of non-Gaussian

distributions) were compared to single values with Wilcoxon signed rank tests. Distributions

were compared using the Kolmogorov-Smirnov test. No statistical methods were used to pre-

determine sample sizes, but our sample sizes are similar to those generally employed in the field.

Data collection and analysis were not performed blind to the conditions of the experiments. All

statistical tests were two-tailed.

Firing fields

All analyses of spike trains emitted during the awake state were restricted to epochs in which

the linear velocity of the rat was greater than 5 cm.s−1. Firing maps and linearized firing curves

were computed using a kernel-based method (bin size: 2.4 cm). The firing rate was estimated

at each point x as:

f(x) =
∑

nt × w(|x− xt|)/
∑

dt× w(|x− xt|)

where, in a given time bin t, nt is the number of action potentials emitted, xt is the position of

the rat, and dt is the time bin size. The kernel w was a Gaussian of width 4.5 cm. Firing fields
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were defined as the set of contiguous bins containing the location of maximal firing rate (min

1 Hz for Active and 0.7 Hz for Passive), for which the firing rates exceeded 30% of the peak

firing rate. Pyramidal cells with at least one firing field were defined as place cells.

The stability of firing fields between conditions was assessed using two complementary meth-

ods (Figs. 1D and S2D). We first tested for random remapping using the method described in (21). 

Briefly, we measured the unsigned proportional field shifts of all the recorded place cells and 

compared their average to a null distribution constructed by shuffling (n = 2, 000) the identity of 

the cells to simulate a random rearrangement of the fields. Second, for each place cell, the location 

of the peak firing rate was measured as an angle on the obround-shaped track, and peak shifts 

were measured as angular deviations between two conditions. After testing dis-tribution 

uniformity (Rayleigh test), the mean direction of the shift distribution was compared to zero 

using a V test.

Theta power, frequency and cycles

Power spectra and spectrograms were computed from the detrended LFP signal using multitaper

estimation methods (http://chronux.org). Power spectra were normalized for each rat as

(Sij − µj)/σj , where Sij is the power spectrum for a given condition i of rat j, and µj and

σj are the mean and the standard deviation of the power spectra for all of the conditions for

rat j. Theta power was measured as the maximum power in the theta band (6–10 Hz) of

the normalized power spectrum, and frequency was measured as the mode located in the same

range (Fig. 2A-B). Theta cycles started at the peak of the LFP filtered in the theta band. Cycles

shorter than 80 ms or longer than 200 ms were discarded, and only periods containing at least

three contiguous cycles were selected for further analysis.

Theta asymmetry and phase precession

To preserve the asymmetrical shape of the theta oscillation, precise peak and trough times were 

detected on the LFP filtered between 1 and 40 Hz. This was used to assess theta asymmetry 
and spike phase precession. Theta asymmetry was measured as log(∆t2/∆t1), where ∆t1 is 

the duration between cycle start and trough, and ∆t2 the duration between trough and cycle end 

(43). Hence, a positive value indicates a shorter descending phase, a negative value indicates a 

shorter ascending phase, and zero indicates symmetrical cycles (Fig. 2B).

To analyze theta phase precession, in-field spike theta phases were plotted against linearized 

positions on the track. Slopes and significance were determined by linear-circular regression (44). 

Average phase precession density plots were constructed by normalizing the position in the firing 
field and shifting the mean spike theta phase to 180°, then normalizing by the total number of 

spikes, and averaging over cells (Fig. 2E).
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Theta burst frequency

Spike times were converted to unwrapped theta phases and divided by 2π, yielding units of theta

cycles. Spectrograms computed on the resulting spike trains measured frequencies relative to

theta, compensating for moment-to-moment variations in theta frequency over the course of a

given experiment (Figs. 2C,D and S4A).

Candidate replay events

Candidate replay events were detected using place cell ensemble activity during slow wave sleep 

(SWS). SWS periods were first determined by k-means clustering of the theta (6–10 Hz) /

delta (1–4 Hz) ratio computed from spectrograms during sleep sessions (min duration of SWS 

epoch >120 s, permitting brief discontinuities <1 s; Fig. S11A). The method was validated by 

comparing the outcome to episodes where the animal was immobile (linear velocity <0.05 cm/s 

for at least 120 s, with brief movements <1 s) and by visual examination of the video recordings. 

Candidate replay events were defined as epochs of elevated place cell spiking activity (30), i.e. 

when the instantaneous firing rate (1-ms bins, smoothed using a Gaussian kernel of s.d.= 10 ms) 

reached a peak >3 s.d. and remained greater than the mean (Fig. S11C). Candidate events 

lasting >500 ms were excluded.

Bayesian trajectory decoding

To decode potential trajectories from place cell ensemble activity during both travel and sleep 

conditions, we used a previously described Bayesian position reconstruction approach (29). 

Briefly, in the training step, we estimated the probability P (x) that the rat visited location x as 
the normalized occupancy curve, and the average firing rate probability λi(x) for each place cell i 

at position x as the normalized firing curve of the cell. Then in the test step, given the 

instantaneous firing rate vector n in each phase or time window τ (τ = π/3 for theta sequences, τ = 

20 ms for replay events), we estimated the probability P (x|n) (Figs. 3A and 4A):

P (x|n) =
P (n|x).P (x)

P (n)

where

P (n|x) =
N∏
i=1

(λi(x).τ)ni

ni!
e−λi(x).τ

assuming that the N cells fired as independent Poisson processes. We only considered trajectory

events involving at least three units in candidate events lasting >60 ms.

To compute the average reconstructed trajectory over a given condition, reconstructions 

from individual theta subcycles (i.e. phase windows) were centered on the current position of 

the animal and averaged over successive cycles (21). This yielded an average estimate of theta 

sequences (Figs. 3B, S5A, S7A, S8A, S9A, S10A).
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To allow comparison of trajectories across conditions, the Bayesian decoding algorithm was

independently trained on each of the travel sessions (e.g. firing fields in Passive 1) and applied to

the same travel session (theta sequences in Passive 1) and subsequent sleep session (replay events

in sleep following Passive 1). One caveat was therefore that differences in training conditions

could bias the comparisons of reconstruction quality. To control for this possibility, we used four

different controls: (i) Control for cell count (Fig. S7). Passive 1 typically included fewer cells.

To control for this, analyses were restricted to matching random subsets of place cells in Active

and Passive 2. This was repeated 30 times in order to obtain a representative data set, and up to

300 theta cycles were reconstructed for a given cell subset. (ii) Control for spike count (Fig. S8).

Firing rates in Passive 1 were somewhat lower than in Active. For each rat, we randomly

downsampled the spike trains of the most active place cells in Active and Passive 2 to match the

median of the firing rate distribution in Passive 1. (iii) Control for decoding quality (Fig. S9).

To match decoding quality across conditions, reconstruction errors were first computed in 500-

ms time bins for each travel condition. For Passive 1 and Passive 2, bins with a high decoding

error were progressively excluded, until the median of the error distribution was smaller than

the median of the error distribution in Active. Finally, positions were decoded using only theta

cycles falling in these low error bins. Note that this also controlled for potential alterations

in spatial coding, both at the single cell and at the population level (i.e. including higher

order alterations that would not be manifested at the single cell level). (iv) Control for field

variability (Fig. S10). To rule out a possible effect of firing variability between successive laps

(e.g. small changes in field locations), analyses were repeated on a lap-by-lap basis, whereby

the Bayesian decoding algorithm was retrained on each individual lap before sequences were

assessed. Together, these four controls ruled out the possibility that our main conclusions based

on direct comparisons could be accounted for by differences in training conditions.

Assessing trajectories: trajectory scores and slopes, quadrant scores

To identify trajectories, we measured the previously defined trajectory score and slope (30) of each 

candidate event. These assess whether events consist of linearly aligned positions, i.e. whether the 

successive reconstructed positions are tightly arranged (high score) along an oblique line (high 

slope). Briefly, each candidate trajectory consisted of reconstructed positions P (x|n) during m 

successive time or phase intervals ∆ξ (∆ξ = π/3 for theta sequences, ∆ξ = 20 ms for replay 

events). For a given candidate trajectory, the average likelihood R that the rat is located within a 

distance d of a linear trajectory defined by its velocity v and starting location ρ is:

R(v, ρ) =
1

m

m−1∑
k=0

P (|pos− (ρ+ v.k.∆ξ)| 6 d)

where the value of d was set to 45 cm to allow for small local variations in velocity (i.e. 1/3 of

the mean field size, consistent with previous studies). Because in the present experiments the
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track was obround, for those time bins k when a trajectory would specify a location beyond the

end of the linearized track, the trajectory was wrapped around and continued from the start.

To find the best fit line (i.e. maximize R), we evaluated all possible combinations of v and ρ

that yielded a total distance less than the track length (6 m).

Thus, genuine trajectories would yield both high scores and slopes (R � 0, |v| � 0),

whereas static representations of current position would result in high scores but low or zero

slopes (R � 0, v ∼ 0), and random activity would be associated with low scores (R ∼ 0), but

possibly spuriously high slopes.

In order to assess the significance of trajectory scores, we used a shuffling procedure devel-oped 

by (30). Briefly, we generated n = 5, 000 shuffled candidates by shifting each reconstructed 

position P (x|n) by a random distance, yielding a null distribution of scores. Note that this selec-

tively scrambled the linear arrangement of reconstructed positions, while preserving the spatial 

coherence of positions represented by individual cell assemblies (contrary to e.g. independent 

shuffling of individual spike trains). In other words, shuffling was applied at the level of cell 

assemblies rather than single neurons.

More precisely, shuffles were generated by circularly shifting the decoded probabilities within

each phase or time window by a random number of bins. The Monte Carlo p-value was calculated

as the proportion of scores in the shuffled distribution greater than the score of the candidate

trajectory. Candidate trajectories with a p-value 6 0.05 were considered significant. In addition,

in order to compare trajectory events from different rats recorded in different conditions (i.e. with

differences in number of neurons, decoding quality, etc.), trajectory scores were normalized by

computing a non-parametric equivalent of a z-score, i.e. by subtracting the mean and dividing by

the standard deviation of the distribution of shuffled scores (Figs. 3C, S7C, S8C, S9C, S10C). In

Figure 4B, to assess changes in sleep activity induced by preceding awake behavior, for each rat,

we evaluated each score in post-sleep relative to baseline sleep by computing a non-parametric

equivalent of a z-score, i.e. by subtracting the median score in baseline sleep, and dividing by

the difference between the first and third quartiles of the distribution of scores in baseline sleep.

These scores relative to baseline were then pooled across rats and compared between conditions.

Candidate replay events during baseline sleep were decoded using the Bayesian algorithm trained

on the same travel condition as the post sleep session.

To compute the proportion of significant theta sequences (Fig. 3C), only events with signifi-

cant score and positive slope were counted (the same conclusion was reached without the slope

restriction: 14.66% in Passive 1, 20.20% in Active, 16.37% in Passive 2; all proportions were

significantly greater than shuffled control proportions and all proportions were different between

one another; data not shown).

To confirm the above trajectory assessment using an independent measure, we used the 

quadrant score first described in (27). Similar to the trajectory score and slope method, each 

candidate trajectory was first described by a probability matrix consisting of successive recon-
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structed positions P (x|n). The central zone of this probability matrix was defined as ±1.5 m

from the current position of the animal and ±2/3 theta cycle around the cycle trough. This was

divided equally into four quadrants. The summed decoded probabilities in the top left and bot-

tom right quadrants (opposite to the current running direction of the animal) were subtracted

from the sum in the bottom left and top right quadrants (along the current running direction),

then normalized by the sum of all four quadrants (Figs. 3F, S7D, S8D, S9D, S10D). Hence,

positive differences would correspond to theta sequences sweeping in the running direction of

the animal, whereas differences close to zero would indicate a lack of sequential structure in the

decoded probabilities.

Assessing trajectories: Z-proportions and proportion ratios

In order to simultaneously visualize the distribution of trajectory scores and slopes across can-

didate trajectories and contrast them between behavioral conditions, events were first sorted

according to their trajectory scores and slopes. Each cell of the resulting score-slope matrix

contains the number of events within that specific range of scores and slopes divided by the

total number of events. To assess the statistical significance of these proportions, we created

n = 5, 000 surrogate score-slope matrices using shuffled data as described in the previous sec-

tion. We then z-scored the proportion in each cell of the observed matrix (data) relative to the

mean and standard deviation of the 5,000 proportions located in the same cell of the surrogate

matrices (z-proportion; Figs. 3E, 4D, S7E, S8E, S9E, S10E, S12F, S13C).

A complementary approach was used in Figure S13D, where the color code indicates the

proportion ratio r defined as:

rc =
1

m

m∑
i=1

ndata
ndata + nshufflei

where m is the number of shuffles, ndata the number of events in cell c of the score-slope matrix,

and nshufflei the number of events in cell c for the i-th shuffle. Thus, a ratio of 0.5 indicates that

the cell contains the same proportion of observed and shuffled data, ratios above 0.5 indicate

that scores and slopes in cell c are enriched in the data relative to the shuffle (up to a maximum

ratio of 1 indicating that events with the corresponding score and slope were observed in the

data but in none of the 5,000 shuffle iterations), and ratios below 0.5 indicate that the scores

and slopes in c are depleted in the data relative to the shuffle (down to a minimum ratio of 0

indicating that events with the corresponding score and slope occurred in the shuffle but not in

the original data).

Pairwise bias correlations

In order to directly compare the order between any two spike sequences, we used the pairwise bias 

correlation method developed by (45). Briefly, we computed a bias matrix Bk for each

8



sequence k:

Bk(i, j) =
nk(i, j)− nk(j, i)
nk(i).nk(j)

where nk(i) is the number of spikes emitted by neuron i in the k-th sequence, and nk(i, j) is the

number of times neuron i spiked before neuron j in the k-th sequence. Bk(i, j) therefore reflects

the bias of i to spike before j in the k-th sequence, taking values between -1 (i never precedes j)

and 1 (i always precedes j), with 0 representing no bias (i precedes j half of the time).

The correlation between two sequences k and l is ρ(k, l) = cos θ, where θ is the angle between

the directions of Bk and Bl, when Bk and Bl are considered as vectors. Therefore

ρ(k, l) =

∑
i,j Bk(i, j).Bl(i, j)√∑

i,j Bk(i, j)
2.
√∑

i,j Bl(i, j)
2

where i and j are neurons that fired in both sequences k and l.

Comparisons within and between theta sequences and replay events were restricted to se-

quences including three or more (common) neurons. Autocorrelations (k = l) were discarded

from the analysis.

To assess significance for the correlation of a given pair (k, l) of sequences, we constructed

a surrogate distribution of pairwise bias correlations by shuffling the spike order in sequence l.

The observed pairwise bias correlation ρ(k, l) was deemed significant if it exceeded 95% of the

shuffled distribution.

In Figures 3G and 4G, each condition (baseline sleep, Passive 1, etc.) was subdivided into

20 temporal bins. To represent the similarity between two given temporal bins, we first computed

for each recording session the median correlation between individual sequences within these bins,

then took the median across all sessions.

Ripple detection

LFPs from all channels located in or close to the pyramidal layer were detrended and filtered

between 100 and 250 Hz, then averaged. In order to prevent spurious detection due to high

frequency noise contamination, the detrended signal from the selected channels was also filtered

between 300 and 500 Hz, then averaged and subtracted from the mean filtered signal. Negative

values, reflecting high frequency noise periods, were discarded while all positive values were

z-scored, and ripples were defined as epochs during which the values remained above 1 s.d. with

a peak greater than 3 s.d. Excessively brief (6 20 ms) or long (>110 ms) epochs were excluded

from subsequent analyses.

9
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Fig. S7. Reduced cell count does not account for theta sequence degradation during passive
travel. For each rat, subsets of place cells were selected in Active and Passive 2 to match the number
of place cells recorded in Passive 1, and used to decode position in space. This downsampling proce-
dure was repeated 30 times. (A) Rat position was then estimated across individual theta subcycles
and averaged across all rats (same as in Fig. 3B). Trajectory scores and slopes (in cm.cycle−1) are
indicated above each reconstruction. (B) Distributions of significant theta sequence slopes (KS tests;
left: P1–A, ∗∗∗P < 10−13; center: A–P2, ∗∗∗P < 10−43; right: P1–P2, P > 0.05). Colored bands
indicate significant differences. Right, slopes of significant theta sequences (KW test, P < 10−39;
∗∗∗P < 0.00033 for post-hoc comparisons; ∗∗∗P < 0.001 otherwise). (C) Normalized score of theta
sequences (KW test, P < 10−9; ∗∗∗P < 0.00033 for post-hoc comparisons). (D) Quadrant score
computed from individual theta cycles (KW test, P < 10−75; ∗∗∗P < 0.00033 for post-hoc com-
parisons; ∗∗∗P < 0.001 otherwise). (E) Distribution of theta sequence quality assessed by joint
trajectory score and slope (color codes for proportion relative to shuffled control data).
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Fig. S8. Reduced firing rate does not account for theta sequence degradation during passive
travel. For each rat, random spikes of place cells in Active and Passive 2 were progressively removed
until the median firing rate of place cells in Active and Passive 2 was smaller than the median firing
rate of Passive 1 place cells. (A) Rat position was then estimated across individual theta subcycles
and averaged across all rats (same as in Fig. 2B). Trajectory score and slope (in cm.cycle−1) are
indicated above each reconstruction. (B) Distributions of significant theta sequence slopes (KS tests;
left: P1–A, ∗∗∗P < 10−9; center: A–P2, ∗∗∗P < 10−9; right: P1–P2, P > 0.1). Colored bands
indicate significant differences. Right, slopes of significant theta sequences (KW test, P < 10−11;
∗∗∗P < 0.00033 for post-hoc comparisons; ∗P < 0.05, ∗∗∗P < 0.001 otherwise). (C) Normalized
score of theta sequences (KW test, P < 10−10; ∗∗P < 0.0033, ∗∗∗P < 0.00033 for post-hoc
comparisons). (D) Quadrant score computed from individual theta cycles (KW test, P < 10−7;
∗∗∗P < 0.00033 for post-hoc comparisons; ∗P < 0.05, ∗∗∗P < 0.001 otherwise). (E) Distribution
of theta sequence quality assessed by joint trajectory score and slope (color codes for proportion
relative to shuffled control data). (F) Resulting place cell firing rates following spike downsampling
(P1: 0.905±0.145 Hz, A: 0.933±0.083 Hz, P2: 0.829±0.130 Hz; KW test, P > 0.90).
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Fig. S9. Reduced decoding quality cannot account for theta sequence degradation during
passive travel. In order to control for reduced decoding quality in passive travel sessions, the
present analyses were restricted to theta cycles in Passive 1 and Passive 2 where decoding error
(estimated in 500 ms time bins) was low, i.e. close to the error median in Active (see Methods).
(A) Average Bayesian reconstruction of position (relative to actual position of the animal) across
theta subcycles for all rats (as in Fig. 3B). Trajectory scores and slopes (in cm.cycle−1) are indicated
above each reconstruction. (B) Distributions of significant theta sequence slopes (KS tests; left:
P1–A, ∗∗∗P < 10−9; center: A–P2, ∗∗∗P < 10−16; right: P1–P2, P > 0.05). Colored bands
indicate significant differences. Right, slopes of significant theta sequences (KW test, P < 10−15;
∗∗∗P < 0.00033 for post-hoc comparisons; ∗∗∗P < 0.001 otherwise). (C) Normalized score of
theta sequences (KW test, P > 0.05). (D) Quadrant score computed from individual theta cycles
(KW test, P < 10−16; ∗∗P < 0.0033, ∗∗∗P < 0.00033 for post-hoc comparisons; ∗∗∗P < 0.001
otherwise). (E) Distribution of theta sequence quality assessed by joint trajectory score and slope
(color codes for proportion relative to shuffled control data). (F) Decoding errors were similar in all
travel conditions following the restriction procedure described here (P1: 0.802±0.018, A: 0.80±0.023,
P2: 0.802±0.014).
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Fig. S10. Trial-to-trial field variability does not account for theta sequence degradation during
passive travel. In order to control for firing variability across laps, the Bayesian decoding algorithm
was retrained on each individual lap before sequences were assessed. (A) Rat position was estimated
across individual theta subcycles and averaged across all rats (same as in Fig. 3B). Trajectory scores
and slopes (in cm.cycle−1) are indicated above each reconstruction. (B) Distributions of significant
theta sequence slopes (KS tests; left: P1–A, ∗∗∗P < 10−12; center: A–P2, ∗∗∗P < 10−13; right:
P1–P2, P > 0.05). Colored bands indicate significant differences. Right, slopes of significant theta
sequences (KW test, P < 10−18; ∗∗∗P < 0.00033 for post-hoc comparisons; ∗P < 0.05, ∗∗∗P <
0.001 otherwise). (C) Normalized score of theta sequences (KW test, P < 10−27; ∗∗∗P < 0.00033
for post-hoc comparisons). (D) Quadrant score computed from individual theta cycles (KW test,
P < 10−9; ∗∗P < 0.0033, ∗∗∗P < 0.00033 for post-hoc comparisons; ∗∗∗P < 0.001 otherwise).
(E) Distribution of theta sequence quality assessed by joint trajectory score and slope (color codes
for proportion relative to shuffled control data).
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Fig. S11. Candidate replay events during SWS. (A) During sleep recordings, SWS periods were
isolated based on the theta/delta ratio (black curve on power spectrogram). K-means clustering
identified epochs with the smallest ratio (min duration 120 s, brief interruptions <1 s). (B) SWS
duration was not significantly different between sleep conditions (repeated measures ANOVA, P >
0.05). (C) Detection of candidate events for an example SWS period. Top traces, raw (green) and
ripple-band filtered (black) LFP. Middle, place cell activity. Cells are ordered according the location
of their place field on the track. Bottom, multi-unit activity (MUA) of place cells (time bin, 1
ms; black line, mean of the smoothed histogram, used to define the beginning and end of selected
candidates; red line, 3 s.d. above the mean, used as a threshold for the peak). Note that candidate
events coincide with ripples.(D–F) The number of candidate events (D), their frequency (E), and
ripple rates (F) were not significantly different between sleep conditions (repeated measures ANOVA,
P > 0.05). (G) Top, peri-event time histograms of candidate replay events relative to peak ripple
power. Grey area indicates the beginning and end of ripples and 0 the time of the peak ripple power
(KS test, P > 0.05 between all condition pairs). Bottom, cumulative distribution of replay events
in ±1 s time windows centered on ripple peak.



C
um

ul
at

iv
e 

fr
ac

tio
n

Temporal distance
from ripples (s)

0

0.5

1

0 0.5 1

A

0‒0.5 0.5
0

0.01

0.02

0.03

0‒0.5 0.50‒0.5 0.5

P
ro

po
rt

io
n

of
 r

ep
la

y 
ev

en
ts

Time to ripples (s)Time to ripples (s)Time to ripples (s) -0.2

B

***

***

***
***

0

0.2

0.4

B
as

el
in

e-
no

rm
al

iz
ed

tr
aj

ec
to

ry
 s

co
re

C
***

***

1

1.4

1.8

P
ro

po
rt

io
n 

re
p

la
y

po
st

 / 
ba

se
lin

e

Condition
P1 A P2

1.2

1.6

E

P
ro

po
rt

io
n 

of
si

gn
ifi

ca
nt

 r
ep

la
y

0.0

0.4

0.2

0.6
***D

*** ***

Slope (m/s)
0‒25 25

Slope (m/s)
0‒25 25

Slope (m/s)
0‒25 25

P
ro

po
rt

io
n

0.2

0.0

0.4

0.6

0.8 *** ***

0

3

6
A

bs
ol

ut
e 

sl
op

e 
(m

/s
)

Condition
P1 A P2

F

T
ra

je
ct

or
y 

sc
or

e

0.2

0.4

0.6

0.8

1.0
Passive 1 Active Passive 2

Z
-prop

ortion

0

10

Temporal distance
from ripples (s)

0 0.5 1

Temporal distance
from ripples (s)

0 0.5 1

Condition
P1 A P2

0 30‒30
Slope (m/s)

0 30‒30
Slope (m/s)

0 30‒30
Slope (m/s)

NS

Fig. S12. Restricting analyses to ripple epochs does not alter the results. (A) Top, peri-event
time histograms of candidate replay events relative to peak ripple power. Grey area indicates the
duration of ripples and 0 the time of peak ripple power (KS test, P > 0.05 between all condition
pairs). Bottom, cumulative distribution of replay events in ±1 s time windows centered on ripple
peak. (B–F) The analyses in Fig. 4 were replicated on candidate events restricted to ripple epochs.
(B) Scores of replay events relative to baseline sleep (KW test, P < 10−15; ∗∗∗P < 0.00033 for
post-hoc comparisons; ∗∗∗P < 0.001 otherwise). (C) Proportion of significant replay events relative
to baseline sleep (binomial proportion tests, ∗∗∗P < 0.001). Sleep replay was boosted following
active travel, compared to passive travel. (D) Distributions of replay slopes (KS test; left: SP1–SA,
∗∗∗P < 10−5; center: SA–SP2, ∗∗∗P < 10−5; right: SP1–SP2, P > 0.05). Colored bands indicate
significant differences. Right, absolute slopes of replay events (KW test, P < 10−27; ∗∗∗P < 0.00033
for post-hoc comparisons). (E) Proportion of forward (darker colors) vs reverse (lighter colors) replay
events. Only in sleep following active travel was replay biased to reflect actual wake experience
(binomial proportion tests, ∗∗∗P < 0.001). (F) Distribution of replay quality assessed by joint
trajectory score and slope (color codes for proportion relative to shuffled control data).
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Fig. S13. Replay is degraded following passive travel. (A) Example significant replay events in
post-sleep sessions. (B) Distributions of replay slopes (KS tests; left: SP1–SA, ∗∗∗P < 10−8; center:
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replay events relative to shuffled control data.
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